Localization of nonsmooth lower and upper functions for periodic boundary value problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Nonsmooth Lower and Upper Functions for Periodic Boundary Value Problems

In this paper we present conditions ensuring the existence and localization of lower and upper functions of the periodic boundary value problem u + k u = f(t, u), u(0) = u(2 ), u(0) = u(2 ), k ∈ , k 6= 0. These functions are constructed as solutions of some related generalized linear problems and can be nonsmooth in general.

متن کامل

Method of Lower and Upper Functions in Impulsive Periodic Boundary Value Problems

We present here new existence results for the nonlinear second order impulsive periodic boundary value problem. They rely on the presence of a pair of associated lower/upper functions. In contrast to the results known up to now, we need not assume that they are well-ordered.

متن کامل

Periodic Boundary Value Problems and Periodic Solutions of Second Order FDE with Upper and Lower Solutions∗

We use the monotone iterative technique with upper and lower solutions in reversed order to obtain two monotone sequences that converge uniformly to extremal solutions of second order periodic boundary value problems and periodic solutions of functional differential equations(FDEs).

متن کامل

Upper and Lower Solutions Method for Fourth-order Periodic Boundary Value Problems

The purpose of this paper is to prove the existence of a solution of the following periodic boundary value problem ( u(t) = f(t, u(t), u′′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π) in the presence of an upper solution β and a lower solution α with β ≤ α, where f(t, u, v) satisfies one side Lipschitz condition.

متن کامل

On Second Order Periodic Boundary-value Problems with Upper and Lower Solutions in the Reversed Order

In this paper, we study the differential equation with the periodic boundary value u′′(t) = f(t, u(t), u′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π). The existence of solutions to the periodic boundary problem above with appropriate conditions is proved by using an upper and lower solution method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Bohemica

سال: 2002

ISSN: 0862-7959,2464-7136

DOI: 10.21136/mb.2002.133955